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ABSTRACT 

We show that harmonic measure for the simple random walk on the 

n x • - • x n c u b e  i n  t h e  d - d i m e n s i o n a l  l a t t i c e  is s u p p o r t e d  o n  o(n d) v e r t i c e s .  

1. I n t r o d u c t i o n  

Let Qd(n) denote the d-dimensional n × n x . . .  × n cube in the lattice Z a, i.e. 

Qd(n) = { ( x l , . . . , X d ) :  Xi • 0 . . . .  , n -  1}. 

We define {Sk}k>o, So = v as the Markov chain on Qd(n) which starts  at  

v 6 Qd(n) and 

P{Sk+I = w[So, . . . ,  Sk} = (degree of Sk) -1 

if w is adjacent to Sk (i.e. w - Sk = e~ or - e i ,  where ei is the i ' t h  coordinate  

vector) and = 0 otherwise. {S~}k>0 is called a Simple Random Walk (SRW) on 

Qd(n) s tar t ing at v. Given a set of vertices A, let p . ( S ~  denote the harmonic 

measure suppor ted  on A for the SRW start ing at v. Tha t  is, for S C A, #~(S) is 

the probabi l i ty  tha t  the first visit of the SRW to A is in S. In this note we prove 

the following. 
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THEOREM: For any e • 0 there is N(e) so that for any n > N(e) and any v and 

A in Qd(n), there is a set S(v, A) with no more than en d vertices such that 

ttv(S(v, A)) > 1 - e. 

Remarks: (1) This result is a discrete high-dimensional analogue of Oksendal 's 

Theorem (Oksendal [8]), asserting that  the harmonic measure on compact sets 

in R 2 is singular to two-dimensional Lebesgue measure. As was pointed out by 

Carleson, if A is a compact set in R 2 then the density of the harmonic measure 

at a Lebesgue density point of A is zero, and Oksendal's Theorem follows (see 

Carleson [3]). Often in random walk, Brownian motion problems, the Brownian 

motion situation is just a limit of the discrete case. And thus the continuous 

proof translates to a discrete proof. Oddly, it does not seem that  the idea of 

the proof using Lebesgue density points translates directly to the discrete case, 

as a discrete variant of the Lebesgue density theorem fails for subsets of the 

lattice. In the continuous set-up there are by now much better  results bounding 

the Hausdorff dimension of the support of harmonic measure (see Bourgain [2], 

Bishop [1]). 

(2) For a study of harmonic measure on connected sets in Z 2 see Lawler [5]. 

For background on random walks in Z d see Lawler [4]. 

2. P r o o f  

Proof of Theorem: We need the following definition. A vertex u in A is called a 

5 -dens i ty  v e r t e x  ifYi = 1 , . . .  ,n, tAN B(u,i) l  > ~(2i) d where B(u,r )  denotes 

a ball of radius r centered at u in the L °° metric. Denote by OB(u, r) the set of 

vertices with distance r from u. 

LEMMA 1: For any A there are at most 22dhn d vertices in A which are not 

~-density vertices. 

Proof of Lemma 1: A binary subcube of Qd(n) is a translation of some cube of 

the form Qd(2k) by a vector ( a l , . . . ,  ad), where Vi a~ is of the form j2 k. Note that  

two binary subcubes are either disjoint or one is contained in the other. Now if a 

vertex v is not a 6-density vertex then there is a ball B(v, i) centered at v with no 

more than 6(2i) d elements of A. Also there is a binary cube containing v inside 

B(u, i )  with more than 2-2d(2i) a vertices, and no more than 6(2i) d elements of 
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A. So for any vertex which is not a &density vertex pick such a binary cube. 

The union of these binary cubes has a disjoint subcovering. Hence the number 

of elements of A in the union is smaller than 22dSn d, and the lemma follows. 

Take 5 = e/(22d+l); therefore it is enough to estimate the size of the support 

of harmonic measure restricted to 5-density vertices of A. Denote the set of these 

vertices by A~. 

LEMMA 2: I f  u • A$ then 

P(SRW starting anywhere in B(u, r) hits A before hitting OB(u, 2r)) > c(6) 

for any r > O. 

Proof of Lemma 2: Adapted from Lawler [6] (Lemma 11). Denote by G' (x ,y)  

the Green function for SRW killed upon hitting OB(u, 2r), i.e. G'(x,y) is the 

expected number of visits to y for the SRW starting at x and killed on OB(u, 2r). 

Then for d > 3, Vx, y E B(u,r), G'(x,y)/G(x,y) > C, where G(x,y) is the Green 

function for SRW in Z d, and C is independent of r (see Lawler [4, p. 35]). In two 

dimensions Vx, y • B(u, r), G'(x, y) is uniformly bounded away from zero, for all 

r. Now let V~ denote the number of visits of SRW starting at x to A N B(u, r) 
before hitting OB(u, 2r). Then 

E(V~:) = ~ G'(x, y) > 6r d inf G'(x, y). 
yE(AnB(u,r)) 

yE(ANB(u,r)) 

Yet for x,y in B(u, r), G'(x, y) >_ CG(x, y) >_ dr 2-d. Hence E(V~) >_ c'~r 2. But 

E(V~[V~ > 1) is smaller than the expected time till hitting OB(u, r), and it is 

standard that the expected time is smaller than cl'r 2. Hence 

P(V~ > 1) = E(V~)[E(V~IV~ > 1)] - 1  _> c '~ r2 (cHr2 )  - 1  - -  c(~)  > O. 

We are done with the lemma; back to the proof of the theorem. We follow an 

idea from Bourgain [2]. 

For simplicity we will assume first that n = 3 k for some k, and that  the SRW 

starts at the boundary of the cube. The adaptation to the general case is easy 

and will be clear from the proof below. Divide Qd(n) into 3 ld subcubes {Qj } each 

of size 3 k-z. If l is large enough, depending only on the ~ in the density condition, 

then there is a subcube Q0 such that #v(Q0 M A~) _< 1/2(3Ld), i.e., Q0 gets less 
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than its "fair share" of harmonic measure. To prove this claim we consider two 

cases. First, if there is a subcube Q0 such that  Q0 N A~ = 0 then the claim is 

trivial. Otherwise every subcube contains points of A~ and so by the density 

condition SRW starting in such a cube has a chance c(~) of being captured by A 

before it leaves the double of the cube. Let Q0 be a subcube at the center of Qd(n) 

and note that  SRW starting on the boundary of the cube must pass through at 

least 31/4 nonadjacent cubes to get to Q0, so has less than (1 - C((~)) 3'/4 chance 

of getting there. Since this is much less than (2(3td)) -1 for l large, we have 

proven the claim. Proceed by dividing each subcube again into 3 ld subcubes. By 

the same argument each subcube contains a further subcube getting less than 

its "fair share", and so on. The iterative subdivision into subcubes results in 

a 3ld-tree structure among the subcubes. Qd(n) is the root of the tree. First 

generation subcubes are the children of the root, and so on. To finish, assume T 

is a k tree, i.e., each vertex has k children. Let Tm denote the m ' t h  level of the 

tree, i.e. all vertices that  have m edges between them and the root. Identify Tm 

with {0 , . . . ,  k - 1} m. Let v be a subprobability measure on T. That  is, the sum 

of u on any level of the tree is c _< 1, the measure of a vertex equals the sum of 

the measures of its children, and all values are nonnegative. Further, assume that  

for any vertex v in the tree, v has a child u = {v, 0} for which v(u) < v(v) / (2k) .  

Pick a random geodesic in the tree according to uniform measure. Tha t  is, s tart  

at the root, pick with equal probability one of its sons. Once you have picked a 

son, pick the next vertex uniformly from his sons and so on. Let {vi}l<~ denote 

that  sequence. The Radon-Nikodym derivative is v(v i ) /k  ~ = X~v(vi_l ) /k  i-1. 

For all i, we have 

P(X i  < 1/2 I X 1 , . . . , X i _ l )  >_ 1/k and E(Xi  [ X I , . . . , X i _ I )  = 1. 

Denote 0i = E(v/X-~ IX1, . . . ,  Xi-1).  By Chebyshev's inequality 

1 - 0i 2 1 
-~ <- P ( ~  < V ~  IX1, . . .  , X , -1)  <_ 

v/-f/2) 2 

which implies that  0¢ are bounded away from 1 (indeed, Oi < 1 - 1/40k). 

I t  follows that  E ( H I < i < , ~ v ~ )  ~ 0, and therefore IIl<iXi ---* 0 in probabil- 

ity. (By the martingale convergence theorem, this convergence also holds almost 

surely.) 

By definition u(v~)/k ~ i . = IIj=IX~, thus v tends to be supported on o(k m) 

vertices of T,~. Translating back to the cube, we get that  most of the harmonic 
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measure restricted to the/~-density vertices is supported on O((3td) m) of the cubes 

in the m ' t h  generation of the subdivision. | 

Remarks: (1) As a corollary to the theorem we get that  i f n  > N(e), v E Qd(n) 

and A C Od(n), IAI > en d then 3u E A pv(u) < e/IAI - cu d. 

QUESTION: Show that for any c > 0 3fc a superpolynomial function (i.e. grows 

faster than any polynomial) such that VA C Qd(n) [A[ > cn d, 3u E A #v(u) < 

fc (n)  - l  

(2) In the theorem above, we first fixed the dimension and then let n go to 

infinity. Instead, one can ask if a similar result holds once we have fixed n = 2, 

and let d go to infinity. The example below, due to B. Weiss, shows that  the 

analogue of the theorem fails. 

Example: Consider Qd(2) = {0, 1} d. Let Ad be a subset of {0, 1} d consisting of 

all the vertices with a number of l ' s  (Hamming weight) between d/2 - (1/10)d 1/2 

and d/2, and 1 as first coordinate, tad] > c'2 d, for some fixed c' > 0. Yet for any 

v E Ad, po(V) > C2 -d for some universal constant C, where 0 denotes the all 

O's vector. Here is a sketch why it is so. Order the cube into d levels according 

to the Hamming weight. Note that, P0 is uniform on any level. Now look at the 

first visit of the simple random walk to level d/2 - (1/10)d 1/2. With probability 

close to 1/2 the random walk will first visit this level in a vertex, with a 0 as 

first coordinate. Conditioning on that  event, the random walk will walk more T 

steps, where T is a geometric r.v. P ( T  = k) = ( ( d -  1)/d)k- l (1  - ( ( d -  X)/d)), till 

the first coordinate will flip to 1, E(T)  = d. After T steps, the level the random 

walk will visit is dominated from above by d/2 - (1/10)d 1/2 + N(0, T) + Td -1/2, 

where N is a normal random variable, as d -1/2 is an upper bound on the drift 

up in the levels, above level d/2 - d 1/2. Thus conditioning on d < T < 2d the 

level in which the walk first visits Ad is distributed almost uniformly. 

This suggests the following. Given a monotone function f :  N -~ N consider 

the family {Qn(f(n))}n>_l. 

QUESTION: For which f ' s  is most of the harmonic measure always supported on 

o(n l('~)) vertices in {Q'~(f(n))} ? 

We conjecture that  all monotone functions f tending to infinity have this 

property. 
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